Remote Sensing for Pest Management

Chris Neeser Plant & Bee Health Surveillance Section Alberta Agriculture and Forestry 403-501-8745, chris neeser@gov.ab.ca

Feb. 25, 2020

Content

- 1. What is remote sensing?
- 2. Field level patterns
- 3. Principles of pest detection with remote sensing
- 4. Current and upcoming technology

berta

Remote Sensing

The application of sensing technology to capture areas of interest in a way that lends itself to mapping of what is being observed.

Alberta

Alberta

Persistance of perennials

Alberta

Seedbank with localized dispersal

Late summer seed drop

Seed germination

Alberta

Alberta

generic bare ground patch

diagnostic spectral patch

Principles of pest detection with remote sensing

Aerial 1 cm GSD

Satellite 50 cm GSD

Satellite 100 cm GSD

Satellite 1000 cm GSD

Red

Green

Alberta

source: esa.int

Hberta

NIR

Red

Alberta

Alberta

Alberta

21

Pixel Classification

- Unsupervised: groupings are based on a natural or forced clustering of the data, without prior knowledge of the what the clusters represent.
- Supervised: groupings are based on the spectral characteristics of known features.

Feature Recognition

- Object Based Image Analysis (OBIA)
 - Segmentation
 - Object classification / extraction
- Convolutional Neural Networks
 - identifies content of a scene
 - requires large training data set
 - computational intensive

Diagnosing the Problem

Application Technology

Technology for spot treatment application

Pulse width modulation

- responds to speed variations
- prevents overlap
- maintains buffer distance
- integration with spot treatment maps

Technology for spot treatment application

Real time detection

- Pre-seed, Pre-emerge
 - WeedIT, Weed Seeker, Trimble
- In-crop
 - Agrifac AiCplus, Kuhn I-Spray, Blue River
- Drawbacks
 - \$\$\$
 - not suitable for monitoring

Spray drones

Remote Sensing Services

- Image libraries
 - Planet, L3Harris Geospatial, Maxar, ESA Sentinel Hub, USGS Earth Explorer
- Aerial Imagery
 - TerrAvion, Deveron, Skymatics, Green Aero Tech
- Cloud based analysis tools
 - Fieldview, FieldX, Farmers Edge, TerrAvion, …

In Conclusion

- 1. Remote Sensing can direct field scouting.
- 2. Detection of some types of pests is feasible in principle.
- 3. Algorithms for pest diagnosis need to be developed.
- 4. Applications will be driven by new hardware developments.

